16 research outputs found

    Alternative translation initiation unraveled by N-terminomics and ribosome profiling

    Get PDF

    Omics assisted N-terminal proteoform and protein expression profiling on methionine aminopeptidase 1 (MetAP1) deletion

    Get PDF
    Excision of the N-terminal initiator methionine (iMet) residue from nascent peptide chains is an essential and omnipresent protein modification carried out by methionine aminopeptidases (MetAPs) that accounts for a major source of N-terminal proteoform diversity. Although MetAP2 is known to be implicated in processes such as angiogenesis and proliferation in mammals, the physiological role of MetAP1 is much less clear. In this report we studied the omics-wide effects of human MetAP1 deletion and general MetAP inhibition. The levels of iMet retention are inversely correlated with cellular proliferation rates. Further, despite the increased MetAP2 expression on MetAP1 deletion, MetAP2 was unable to restore processing of Met-Ser-, Met-Pro-, and Met-Ala- starting N termini as inferred from the iMet retention profiles observed, indicating a higher activity of MetAP1 over these N termini. Proteome and transcriptome expression profiling point to differential expression of proteins implicated in lipid metabolism, cytoskeleton organization, cell proliferation and protein synthesis upon perturbation of MetAP activity

    Bacterial riboproteogenomics : the era of N-terminal proteoform existence revealed

    Get PDF
    With the rapid increase in the number of sequenced prokaryotic genomes, relying on automated gene annotation became a necessity. Multiple lines of evidence, however, suggest that current bacterial genome annotations may contain inconsistencies and are incomplete, even for so-called well-annotated genomes. We here discuss underexplored sources of protein diversity and new methodologies for high-throughput genome re-annotation. The expression of multiple molecular forms of proteins (proteoforms) from a single gene, particularly driven by alternative translation initiation, is gaining interest as a prominent contributor to bacterial protein diversity. In consequence, riboproteogenomic pipelines were proposed to comprehensively capture proteoform expression in prokaryotes by the complementary use of (positional) proteomics and the direct readout of translated genomic regions using ribosome profiling. To complement these discoveries, tailored strategies are required for the functional characterization of newly discovered bacterial proteoforms

    eIF1 modulates the recognition of suboptimal translation initiation sites and steers gene expression via uORFs

    Get PDF
    Alternative translation initiation mechanisms such as leaky scanning and reinitiation potentiate the polycistronic nature of human transcripts. By allowing for reprogrammed translation, these mechanisms can mediate biological responses to stimuli. We combined proteomics with ribosome profiling and mRNA sequencing to identify the biological targets of translation control triggered by the eukaryotic translation initiation factor 1 (eIF1), a protein implicated in the stringency of start codon selection. We quantified expression changes of over 4000 proteins and 10 000 actively translated transcripts, leading to the identification of 245 transcripts undergoing translational control mediated by upstream open reading frames (uORFs) upon eIF1 deprivation. Here, the stringency of start codon selection and preference for an optimal nucleotide context were largely diminished leading to translational upregulation of uORFs with suboptimal start. Interestingly, genes affected by eIF1 deprivation were implicated in energy production and sensing of metabolic stress

    PROTEOFORMER: deep proteome coverage through ribosome profiling and MS integration

    Get PDF
    An increasing amount of studies integrate mRNA sequencing data into MS-based proteomics to complement the translation product search space. However, several factors, including extensive regulation of mRNA translation and the need for three- or six-frame-translation, impede the use of mRNA-seq data for the construction of a protein sequence search database. With that in mind, we developed the PROTEOFORMER tool that automatically processes data of the recently developed ribosome profiling method (sequencing of ribosome-protected mRNA fragments), resulting in genome-wide visualization of ribosome occupancy. Our tool also includes a translation initiation site calling algorithm allowing the delineation of the open reading frames (ORFs) of all translation products. A complete protein synthesis-based sequence database can thus be compiled for mass spectrometry-based identification. This approach increases the overall protein identification rates with 3% and 11% (improved and new identifications) for human and mouse, respectively, and enables proteome-wide detection of 5'-extended proteoforms, upstream ORF translation and near-cognate translation start sites. The PROTEOFORMER tool is available as a stand-alone pipeline and has been implemented in the galaxy framework for ease of use

    The proteome under translational control

    No full text
    A single eukaryotic gene can give rise to a variety of protein forms (proteoforms) as a result of genetic variation and multilevel regulation of gene expression. In addition to alternative splicing, an increasing line of evidence shows that alternative translation contributes to the overall complexity of proteomes. Identifying the repertoire of proteins and micropeptides expressed by alternative selection of (near-)cognate translation initiation sites and different reading frames however remains challenging with contemporary proteomics. MS-enabled identification of proteoforms is expected to benefit from transcriptome and translatome data by the creation of customized and sample-specific protein sequence databases. Here, we focus on contemporary integrative omics approaches that complement proteomics with DNA- and/or RNA-oriented technologies to elucidate the mechanisms of translational control. Together, these technologies enable to map the translation (initiation) landscape and more comprehensively define the inventory of proteoforms raised upon alternative translation, thus assisting in the (re-)annotation of genomes

    N-terminal proteomics and ribosome profiling provide a comprehensive view of the alternative translation initiation landscape in mice and men

    No full text
    Usage of presumed 5UTR or downstream in-frame AUG codons, next to non-AUG codons as translation start codons contributes to the diversity of a proteome as protein isoforms harboring different N-terminal extensions or truncations can serve different functions. Recent ribosome profiling data revealed a highly underestimated occurrence of database nonannotated, and thus alternative translation initiation sites (aTIS), at the mRNA level. N-terminomics data in addition showed that in higher eukaryotes around 20% of all identified protein N termini point to such aTIS, to incorrect assignments of the translation start codon, translation initiation at near-cognate start codons, or to alternative splicing. We here report on more than 1700 unique alternative protein N termini identified at the proteome level in human and murine cellular proteomes. Customized databases, created using the translation initiation mapping obtained from ribosome profiling data, additionally demonstrate the use of initiator methionine decoded near-cognate start codons besides the existence of N-terminal extended protein variants at the level of the proteome. Various newly identified aTIS were confirmed by mutagenesis, and meta-analyses demonstrated that aTIS reside in strong Kozak-like motifs and are conserved among eukaryotes, hinting to a possible biological impact. Finally, TargetP analysis predicted that the usage of aTIS often results in altered subcellular localization patterns, providing a mechanism for functional diversification

    Limited evidence for protein products of non-coding transcripts in the HEK293T cellular cytosol

    No full text
    Ribosome profiling has revealed translation outside canonical coding sequences, including translation of short upstream ORFs, long noncoding RNAs, overlapping ORFs, ORFs in UTRs, or ORFs in alternative reading frames. Studies combining mass spectrometry, ribosome profiling, and CRISPR-based screens showed that hundreds of ORFs derived from noncoding transcripts produce (micro)proteins, whereas other studies failed to find evidence for such types of noncanonical translation products. Here, we attempted to discover translation products from noncoding regions by strongly reducing the complexity of the sample prior to mass spectrometric analysis. We used an extended database as the search space and applied stringent filtering of the identified peptides to find evidence for novel translation events. We show that, theoretically our strategy facilitates the detection of translation events of transcripts from non -coding regions but experimentally only find 19 peptides that might originate from such translation events. Finally, Virotrap-based interactome analysis of two N-terminal proteoforms originating from noncoding regions showed the functional potential of these novel proteins

    Orthogonal proteomics methods to unravel the HOTAIR interactome

    No full text
    Accumulating evidence highlights the role of long non-coding RNAs (lncRNAs) in cellular homeostasis, and their dysregulation in disease settings. Most lncRNAs function by interacting with proteins or protein complexes. While several orthogonal methods have been developed to identify these proteins, each method has its inherent strengths and limitations. Here, we combine two RNA-centric methods ChIRP-MS and RNA-BioID to obtain a comprehensive list of proteins that interact with the well-known lncRNA HOTAIR. Overexpression of HOTAIR has been associated with a metastasis-promoting phenotype in various cancers. Although HOTAIR is known to bind with PRC2 and LSD1 protein complexes, only very limited unbiased comprehensive approaches to map its interactome have been performed. Both ChIRP-MS and RNA-BioID data sets show an association of HOTAIR with mitoribosomes, suggesting that HOTAIR has functions independent of its (post-)transcriptional mode-of-action
    corecore